27 research outputs found

    Soluble oligomerization provides a beneficial fitness effect on destabilizing mutations.

    Get PDF
    Protein stability is widely recognized as a major evolutionary constraint. However, the relation between mutation-induced perturbations of protein stability and biological fitness has remained elusive. Here we explore this relation by introducing a selected set of mostly destabilizing mutations into an essential chromosomal gene of E.coli encoding dihydrofolate reductase (DHFR) to determine how changes in protein stability, activity and abundance affect fitness. Several mutant strains showed no growth while many exhibited fitness higher than wild type. Overexpression of chaperonins (GroEL/ES) buffered the effect of mutations by rescuing the lethal phenotypes and worsening better-fit strains. Changes in stability affect fitness by mediating the abundance of active and soluble proteins; DHFR of lethal strains aggregates, while destabilized DHFR of high fitness strains remains monomeric and soluble at 30oC and forms soluble oligomers at 42oC. These results suggest an evolutionary path where mutational destabilization is counterbalanced by specific oligomerization protecting proteins from aggregation

    Systems-Level Response to Point Mutations in a Core Metabolic Enzyme Modulates Genotype-Phenotype Relationship

    No full text
    Linking the molecular effects of mutations to fitness is central to understanding evolutionary dynamics. Here, we establish a quantitative relation between the global effect of mutations on the E. coli proteome and bacterial fitness. We created E. coli strains with specific destabilizing mutations in the chromosomal folA gene encoding dihydrofolate reductase (DHFR) and quantified the ensuing changes in the abundances of 2,000+ E. coli proteins in mutant strains using tandem mass tags with subsequent LC-MS/MS. mRNA abundances in the same E. coli strains were also quantified. The proteomic effects of mutations in DHFR are quantitatively linked to phenotype: the SDs of the distributions of logarithms of relative (to WT) protein abundances anticorrelate with bacterial growth rates. Proteomes hierarchically cluster first by media conditions, and within each condition, by the severity of the perturbation to DHFR function. These results highlight the importance of a systems-level layer in the genotype-phenotype relationship
    corecore